
Robert D. Falgout
Lawrence Livermore National Laboratory

SciDAC Review
May 13, 2003

Bringing Multigrid to the Masses

RDF 2TOPS

Multigrid is Optimal: convergence rate is
independent of discretization parameters

Multigrid methods use
coarse grids to efficiently
damp out smooth error

smoothing

Finest Grid

First Coarse Grid

restriction

prolongation
(interpolation)

The Multigrid
V-cycle

Note:
smaller grid

Want (nearly) constant solution time
as problem size grows in proportion

to the number of processors

Processors (increasing Problem Size)

Ti
m

e
to

 S
ol

ut
io

n

unscalable

scalable

200

150

50

0

100

10 100 10001

RDF 3TOPS

We are developing geometric multigrid
for semi-structured-grid problems

Grids are mostly—but not entirely—structured
Examples: block-structured grids, structured adaptive
mesh refinement (AMR) grids, overset grids

Basic idea: exploit grid
structure where present

Focusing now on solvers
for AMR (for APDEC)

RDF 4TOPS

We are developing parallel Fast Adaptive
Composite Grid (FAC) methods for AMR

AMR application developers have had little
linear solver library support
— Usually have to “roll their own” solvers
— Currently hypre is being used for level & bottom

solves
FAC was designed specifically for AMR
(McCormick)
— Utilizes the grid hierarchy
— Involves so-called “level solves”Library design issue:

solvers like FAC require
(additional) information
about structure

RDF 5TOPS

Semi-structured grid interface (SEMI) is
our vehicle to deliver FAC… and more

SEMI is one of hypre’s
conceptual interfaces
AMG, ILU, already available
Currently used by ASCI for
block-structured apps

Augmenting for AMR users
— more natural way of handling

coarse-fine boundaries
Releasing a spec & impl
— De facto standard
— PETSc solver availability
— CTS2 component

A block-structured grid with
3 variable types and 3
discretization stencils

RDF 6TOPS

We are interacting closely with APDEC

Integration into Chombo is in progress
— hypre level / bottom solvers available
— Some performance issues to be resolved

Implementing parallel FAC code
— Works in serial; finishing up for parallel

Developing FAC for anisotropic problems
— Needed for fusion applications

New non-Galerkin option in PFMG for level
solves
— Retains discretization stencil on all MG levels
— Reduces storage requirements
— 2x speedup in 2D; expect even more in 3D

Constant-coefficient solvers

(3,2)

(2,3) (6,6)

RDF 7TOPS

First release of hypre featuring the Babel
language interoperability tool

Babel provides:
— language interoperability
— OO support

Beta release 1.8.0b uses
Babel for two major
interface classes:
— IJ system builders
— ParCSR solvers (e.g., AMG)

Long term plan: Migrate all hypre interfaces to Babel
to improve and expand language support
Babel / SIDL crucial for PETSc-hypre interoperability
plans and CTS2 interactions

C

C++

F77
F90

Python
Java

RDF 8TOPS

We are speeding up tokamak simulations
through PETSc-hypre combo

CEMM’s M3D code is built upon
PETSc’s distributed data structures

hypre’s AMG solver (via PETSc) is
now speeding up simulations
— Perfect iteration scaling
— Still performance issues to resolve
— Time is halved or better for large runs

0

100

200

300

400

500

600

700

3 12 27 48 75

ASM-GMRES
AMG-FGMRES

0

10

20

30

40

50

60

3 12 27 48 75

ASM-GMRES
AMG-FGMRES
AMG inner

NSTX sawtooth, showing
pressure contours and

surface with some B-lines

RDF 9TOPS

We are generalizing our AMG framework
to address new problem classes

Maxwell and Helmholtz problems have huge near
null spaces and require more than pointwise
smoothing to achieve optimality in multigrid

Our new theory allows for any type of smoother, and
also works for a variety of coarsening approaches
(e.g., vertex-based, cell-based, agglomeration)
A paper is in the works (will submit any day now)

Model of a section of the Next
Linear Collider structure Resonant frequencies in

a Helmholtz Application

RDF 10TOPS

The new theory separates construction of
coarse-grid correction into two parts

The following measures the ability of a given coarse
grid Ωc to represent algebraically smooth error:

Theorem: (1) Assume that µ* ≤ K for some constant K.
(2) Assume that any one of the following holds for η ≥ 1:

Then, µ(PR, e) ≤ ηK, ∀e.
(1) insures coarse grid quality – use CR
(2) insures interpolation quality – necessary condition!

),(µ≡µ
≠

∗ xamnim
eP 0

eRP

eeeAeQeQA ∀,,η≤,
eeeAeQIeQIA ∀,,η≤)−(,)−(

eeeSeSAePePAeSePA scssccsc ,∀,,,)η−(≤, 12 1 −

RDF 11TOPS

CR is an efficient method for measuring
the quality of the set of coarse variables

CR (Brandt, 2000) is a modified relaxation scheme
that keeps the coarse-level variables, Ru, invariant
We have defined several variants of CR, and shown
that fast converging CR implies a good coarse grid:

Hence, CR can be used as a tool to efficiently
measure the quality of a coarse grid!
General idea: If CR is slow to converge, either increase
the size of the coarse grid or modify relaxation
F-relaxation is a specific instance of CR

ρ−


ω−

∆



≤µ ∗
2

1
1

2 rc

RDF 12TOPS

Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine
U-pts as points
slow to converge

Select new C-pts as
indep. set over U

RDF 13TOPS

Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine
U-pts as points
slow to converge

Select new C-pts as
indep. set over U

RDF 14TOPS

Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine
U-pts as points
slow to converge

Select new C-pts as
indep. set over U

RDF 15TOPS

Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine
U-pts as points
slow to converge

Select new C-pts as
indep. set over U

RDF 16TOPS

Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine
U-pts as points
slow to converge

Select new C-pts as
indep. set over U

